Using the Mahalanobis Distance as a Dataset Comparison Metric for Semi-Supervised Detection of COVID-19 in Chest X-rays

Catalina Diaz, Saul Calderón-Ramírez, Daniel Rodriguez-Rivas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Deep learning methods rely on large labeled datasets. However, in real-world applications such as medical imaging, only scarcely labeled datasets might be available. Semi-supervised deep learning leverages both labeled and unlabeled datasets to improve the model's accuracy. However, semi-supervised methodologies frequently assume similar distributions of the labeled and unlabeled dataset. In real-world settings, this assumption might be violated. This gives rise to the need of enforcing data quality attributes such as the consistency between labeled and unlabeled data sources. In this work, we propose the usage of a Mahalanobis-based distance in the embedding space of the deep learning model to pre-assess labeled to unlabeled dataset affinity in a semi-supervised setting. We test how this distance can highly correlate with the accuracy of a popular semi-supervised method known as MixMatch. Moreover, the proposed method is considerably more efficient than previous work in the field.

Idioma originalInglés
Título de la publicación alojada2024 IEEE 42nd Central America and Panama Convention, CONCAPAN 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
Edición2024
ISBN (versión digital)9798350366723
DOI
EstadoPublicada - 2024
Evento42nd IEEE Central America and Panama Convention, CONCAPAN 2024 - San Jose, Costa Rica
Duración: 27 nov 202429 nov 2024

Conferencia

Conferencia42nd IEEE Central America and Panama Convention, CONCAPAN 2024
País/TerritorioCosta Rica
CiudadSan Jose
Período27/11/2429/11/24

Huella

Profundice en los temas de investigación de 'Using the Mahalanobis Distance as a Dataset Comparison Metric for Semi-Supervised Detection of COVID-19 in Chest X-rays'. En conjunto forman una huella única.

Citar esto