Simple Object Detection Framework without Training

Danny Xie-Li, Fabian Fallas-Moya, Saul Calderon-Ramirez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This research introduces a simple framework for Object Detection (OD) based on few-shot methods and Visual Foundation Models (VFM). The framework comprises of three core modules: (i) object proposal, (ii) embedding creation, and (iii) object classification. We evaluated six distinct VFMs to generate the object proposals. We compared the performances of four feature extractors to optimize the object representation, including convolutional neural networks and transformer-based models. Furthermore, we investigated four few-shot methods for classifying objects using minimal labeled data. Our framework provides a scalable and cost-effective solution, specifically applied to OD for pineapple localization in the drone imagery of large pineapple fields, where labeled data are scarce and expensive.

Idioma originalInglés
Título de la publicación alojada6th IEEE International Conference on BioInspired Processing, BIP 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350353709
DOI
EstadoPublicada - 2024
Evento6th IEEE International Conference on BioInspired Processing, BIP 2024 - Liberia, Costa Rica
Duración: 4 dic 20246 dic 2024

Serie de la publicación

Nombre6th IEEE International Conference on BioInspired Processing, BIP 2024

Conferencia

Conferencia6th IEEE International Conference on BioInspired Processing, BIP 2024
País/TerritorioCosta Rica
CiudadLiberia
Período4/12/246/12/24

Huella

Profundice en los temas de investigación de 'Simple Object Detection Framework without Training'. En conjunto forman una huella única.

Citar esto