TY - JOUR
T1 - Incorporation of electromagnetic fields as an alternative technology to increase starch production in corn crops
AU - Suárez-Rivero, Deivis
AU - Marín-Mahecha, Olga
AU - Ortiz-Aguilar, Jannet
AU - Puentes, Addy Esperanza
AU - Suárez-Rivero, Maikel
AU - de Jesús Guzmán-Hernández, Tomás
N1 - Publisher Copyright:
Copyright © 2021 AIDIC Servizi S.r.l.
PY - 2021
Y1 - 2021
N2 - During the last decades, the production of fuels derived from agricultural products called agrofuels or biofuels has been promoted as an alternative to high oil prices and pollution due to carbon dioxide emanating from the primary sources found for that purpose. In this sense, corn is part of the cereals most used in the production of bioenergy, likewise, it is recognized as the most productive vegetable species since antiquity. In the previous context, this project evaluated the performance of starch, as well as the physical-chemical characteristics of corn grains that were subjected to electromagnetic fields. For this, the content of protein, fiber, fiber in acidic detergent, fiber in neutral detergent, fat and nitrogen was determined by official methods 08-01, 46-13 and 30-25 of the AACC. Alike, by optical microscopy, the starch granule was morphologically characterized, with an Accu-scope 3000-led-40 optical microscope with a digital camera Aptina CMOS Sensor of 14 megapixels. For the microscopic observation, suspensions of starch in excess of water were prepared, taking them to a slide, after, covered by cover-object and observed at 100, 400 and 1000 times. The starch yield was determined gravimetrically with soaking in ethyl ether and washing in 96 % ethanol in 40, 100 and 200 U.S. sieves to collect the precipitated starch eliminating the excess of the reagent by evaporation at room temperature. The field and laboratory experiments were carried out at the Fundación Universitaria Agraria de Colombia – UNIAGRARIA, with Porva corn, harvesting until the grain matured (168 days after sowing). For this, it was taken into account that the seeds, before sowing, had been treated with electromagnetic fields at intensities of L1-23 μT, L2-70 μT and L3-118 μT; Electromagnetic field intensities or flux density (in microtesla, μT) were created artificially from the interconnection of electronic devices that carry electrical charges that act as energy sources; moreover, it was observed that with the application this force, the recovery (yield) in the starch doubled without affecting the characteristics of the compound. Finally, the statistical analyzes were performed in the statistical package Statgraphics 5.1Plus, developing a simple variance analysis and a multiple range test.
AB - During the last decades, the production of fuels derived from agricultural products called agrofuels or biofuels has been promoted as an alternative to high oil prices and pollution due to carbon dioxide emanating from the primary sources found for that purpose. In this sense, corn is part of the cereals most used in the production of bioenergy, likewise, it is recognized as the most productive vegetable species since antiquity. In the previous context, this project evaluated the performance of starch, as well as the physical-chemical characteristics of corn grains that were subjected to electromagnetic fields. For this, the content of protein, fiber, fiber in acidic detergent, fiber in neutral detergent, fat and nitrogen was determined by official methods 08-01, 46-13 and 30-25 of the AACC. Alike, by optical microscopy, the starch granule was morphologically characterized, with an Accu-scope 3000-led-40 optical microscope with a digital camera Aptina CMOS Sensor of 14 megapixels. For the microscopic observation, suspensions of starch in excess of water were prepared, taking them to a slide, after, covered by cover-object and observed at 100, 400 and 1000 times. The starch yield was determined gravimetrically with soaking in ethyl ether and washing in 96 % ethanol in 40, 100 and 200 U.S. sieves to collect the precipitated starch eliminating the excess of the reagent by evaporation at room temperature. The field and laboratory experiments were carried out at the Fundación Universitaria Agraria de Colombia – UNIAGRARIA, with Porva corn, harvesting until the grain matured (168 days after sowing). For this, it was taken into account that the seeds, before sowing, had been treated with electromagnetic fields at intensities of L1-23 μT, L2-70 μT and L3-118 μT; Electromagnetic field intensities or flux density (in microtesla, μT) were created artificially from the interconnection of electronic devices that carry electrical charges that act as energy sources; moreover, it was observed that with the application this force, the recovery (yield) in the starch doubled without affecting the characteristics of the compound. Finally, the statistical analyzes were performed in the statistical package Statgraphics 5.1Plus, developing a simple variance analysis and a multiple range test.
UR - https://www.scopus.com/pages/publications/85109737776
U2 - 10.3303/CET2187021
DO - 10.3303/CET2187021
M3 - Artículo de revisión
AN - SCOPUS:85109737776
SN - 2283-9216
VL - 87
SP - 121
EP - 126
JO - Chemical Engineering Transactions
JF - Chemical Engineering Transactions
ER -