Guided Data Augmentation by Transfer Function using Uncertainty Scores for Medical Image Classification

Barnum Castillo Barquero, Saul Calderón-Ramírez, Daniel Rodriguez-Rivas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Deep Learning architectures are widely used to deal with different types of unstructured data (images, text, sound, etc.). However, its successful implementation depends upon the availability of large labeled datasets, avoid model over-fitting. To tackle such challenge, a number of regularization approaches have been developed, among the most popular transfer learning and data augmentation. However, in a transfer learning setting, often the distribution of the source dataset can be too different to the distribution of the target dataset. In this work, we propose a simple methodology to alleviate such distribution mismatch, by using a scoring based approach to augment the data. The scoring consists in measuring the likelihood of the target dataset, according to the distribution in the source data. These scores are fed into a transfer function which computes the probability of augmenting each observation in the source dataset. We test four simple different transfer functions in the context of chest X-ray images binary classification.

Idioma originalInglés
Título de la publicación alojada2024 IEEE 42nd Central America and Panama Convention, CONCAPAN 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
Edición2024
ISBN (versión digital)9798350366723
DOI
EstadoPublicada - 2024
Evento42nd IEEE Central America and Panama Convention, CONCAPAN 2024 - San Jose, Costa Rica
Duración: 27 nov 202429 nov 2024

Conferencia

Conferencia42nd IEEE Central America and Panama Convention, CONCAPAN 2024
País/TerritorioCosta Rica
CiudadSan Jose
Período27/11/2429/11/24

Huella

Profundice en los temas de investigación de 'Guided Data Augmentation by Transfer Function using Uncertainty Scores for Medical Image Classification'. En conjunto forman una huella única.

Citar esto