Exploring DNN Robustness Against Adversarial Attacks Using Approximate Multipliers

Mohammad Javad Askarizadeh, Jorge Castro-Godinez, Ebrahim Farahmand, Ali Mahani, Laura Cabrera-Quiros, Carlos Salazar-Garcia

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Deep Neural Networks (DNNs) play an important role in advancing today's technology by performing machine learning tasks such as image, video, speech, and text analysis, significantly improving real-world applications such as healthcare and autonomous driving. However, their high computational complexity and vulnerability to adversarial attacks are ongoing challenges. In this work, approximate multipliers are introduced in DNN computations, instead of accurate ones, to explore its robustness improvement against adversarial attacks. By uniformly replacing accurate multipliers for state-of-the-art approximate ones in DNN layer models, we explore the DNNs' robustness against various adversarial attacks in a feasible time. Results show up 10% robust accuracy improvement for up to to 7% accuracy drop due to approximations when no attack is present.

Idioma originalInglés
Título de la publicación alojada2024 IEEE 42nd Central America and Panama Convention, CONCAPAN 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
Edición2024
ISBN (versión digital)9798350366723
DOI
EstadoPublicada - 2024
Evento42nd IEEE Central America and Panama Convention, CONCAPAN 2024 - San Jose, Costa Rica
Duración: 27 nov 202429 nov 2024

Conferencia

Conferencia42nd IEEE Central America and Panama Convention, CONCAPAN 2024
País/TerritorioCosta Rica
CiudadSan Jose
Período27/11/2429/11/24

Huella

Profundice en los temas de investigación de 'Exploring DNN Robustness Against Adversarial Attacks Using Approximate Multipliers'. En conjunto forman una huella única.

Citar esto