Explaining When Deep Learning Models Are Better for Time Series Forecasting

Título traducido de la contribución: Explicación de cuándo los modelos de aprendizaje profundo son mejores para la predicción de series temporales

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

There is a gap of knowledge about the conditions that explain why a method has a better forecasting performance than another. Specifically, this research aims to find the factors that can influence deep learning models to work better with time series. We generated linear regression models to analyze if 11 time series characteristics influence the performance of deep learning models versus statistical models and other machine learning models. For the analyses, 2000 time series of M4 competition were selected. The results show findings that can help explain better why a pretrained deep learning model is better than another kind of model.
Título traducido de la contribuciónExplicación de cuándo los modelos de aprendizaje profundo son mejores para la predicción de series temporales
Idioma originalInglés
Número de artículo1
Páginas (desde-hasta)1-8
Número de páginas8
PublicaciónEngineering Proceedings
Volumen68
N.º1
DOI
EstadoPublicada - 27 jun 2024

Huella

Profundice en los temas de investigación de 'Explicación de cuándo los modelos de aprendizaje profundo son mejores para la predicción de series temporales'. En conjunto forman una huella única.

Citar esto