TY - JOUR
T1 - Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes
AU - Ruiz-Vega, Gisela
AU - Arias-Alpízar, Kevin
AU - de la Serna, Erica
AU - Borgheti-Cardoso, Livia Neves
AU - Sulleiro, Elena
AU - Molina, Israel
AU - Fernàndez-Busquets, Xavier
AU - Sánchez-Montalvá, Adrián
AU - del Campo, F. Javier
AU - Baldrich, Eva
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/2/15
Y1 - 2020/2/15
N2 - Malaria, a parasitic infection caused by Plasmodium parasites and transmitted through the bite of infected female Anopheles mosquitos, is one of the main causes of mortality in many developing countries. Over 200 million new infections and nearly half a million deaths are reported each year, and more than three billion people are at risk of acquiring malaria worldwide. Nevertheless, most malaria cases could be cured if detected early. Malaria eradication is a top priority of the World Health Organisation. However, achieving this goal will require mass population screening and treatment, which will be hard to accomplish with current diagnostic tools. We report an electrochemical point-of-care device for the fast, simple and quantitative detection of Plasmodium falciparum lactate dehydrogenase (PfLDH) in whole blood samples. Sample analysis includes 5-min lysis to release intracellular parasites, and stirring for 5 more min with immuno-modified magnetic beads (MB) along with an immuno-modified signal amplifier. The rest of the magneto-immunoassay, including sample filtration, MB washing and electrochemical detection, is performed at a disposable paper electrode microfluidic device. The sensor provides PfLDH quantitation down to 2.47 ng mL−1 in spiked samples and for 0.006–1.5% parasitemias in Plasmodium-infected cultured red blood cells, and discrimination between healthy individuals and malaria patients presenting parasitemias >0.3%. Quantitative malaria diagnosis is attained with little user intervention, which is not achieved by other diagnostic methods.
AB - Malaria, a parasitic infection caused by Plasmodium parasites and transmitted through the bite of infected female Anopheles mosquitos, is one of the main causes of mortality in many developing countries. Over 200 million new infections and nearly half a million deaths are reported each year, and more than three billion people are at risk of acquiring malaria worldwide. Nevertheless, most malaria cases could be cured if detected early. Malaria eradication is a top priority of the World Health Organisation. However, achieving this goal will require mass population screening and treatment, which will be hard to accomplish with current diagnostic tools. We report an electrochemical point-of-care device for the fast, simple and quantitative detection of Plasmodium falciparum lactate dehydrogenase (PfLDH) in whole blood samples. Sample analysis includes 5-min lysis to release intracellular parasites, and stirring for 5 more min with immuno-modified magnetic beads (MB) along with an immuno-modified signal amplifier. The rest of the magneto-immunoassay, including sample filtration, MB washing and electrochemical detection, is performed at a disposable paper electrode microfluidic device. The sensor provides PfLDH quantitation down to 2.47 ng mL−1 in spiked samples and for 0.006–1.5% parasitemias in Plasmodium-infected cultured red blood cells, and discrimination between healthy individuals and malaria patients presenting parasitemias >0.3%. Quantitative malaria diagnosis is attained with little user intervention, which is not achieved by other diagnostic methods.
KW - Electrochemical magneto-immunosensor
KW - Malaria quantitative diagnosis
KW - Paper microfluidic electrode
KW - Plasmodium LDH
KW - Point-of-care (POC) testing
UR - https://www.scopus.com/pages/publications/85075910458
U2 - 10.1016/j.bios.2019.111925
DO - 10.1016/j.bios.2019.111925
M3 - Artículo
C2 - 31818756
AN - SCOPUS:85075910458
SN - 0956-5663
VL - 150
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 111925
ER -