Deep Learning Segmentation of Protein em Maps

Manuel Zumbado-Corrales, Juan Esquivel-Rodriguez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Protein Electron Microscopy (EM) maps are critical in determining the three-dimensional structures of bio-molecules, including proteins and their interactions. The task of identifying regions that correspond to specific proteins is challenging, but crucial for gaining insight into their function and designing drugs to enhance or suppress their processes. Conventional methods of protein EM map segmentation use algorithms that assign a voxel to a region, but can result in difficulties in obtaining a segmentation that maps each region to a single protein unit. Our approach incorporates an interactive mechanism that allows for user guidance of the segmentation process. Our deep learning model is trained on a dataset of protein EM maps and uses a U - Net architecture. Results show that our approach has potential to overcome limitations of traditional state-of-the-art approaches.

Idioma originalInglés
Título de la publicación alojada5th IEEE International Conference on BioInspired Processing, BIP 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350330052
DOI
EstadoPublicada - 2023
Evento5th IEEE International Conference on BioInspired Processing, BIP 2023 - San Carlos, Alajuela, Costa Rica
Duración: 28 nov 202330 nov 2023

Serie de la publicación

Nombre5th IEEE International Conference on BioInspired Processing, BIP 2023

Conferencia

Conferencia5th IEEE International Conference on BioInspired Processing, BIP 2023
País/TerritorioCosta Rica
CiudadSan Carlos, Alajuela
Período28/11/2330/11/23

Huella

Profundice en los temas de investigación de 'Deep Learning Segmentation of Protein em Maps'. En conjunto forman una huella única.

Citar esto