A Comprehensive Deep Learning Pipeline for Arrhythmia Multi-Classification with Electrocardiography Data

Fabricio Quiros-Corella, Randall Loaiza, Rosa Matarrita, Esteban Meneses

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Accurate and timely arrhythmia multi-classification is crucial for diagnosing and managing cardiovascular diseases. Traditional interpretation of electrocardiograms is timeconsuming and prone to human error. To address these challenges, this study describes a novel deep learning-based approach for automated arrhythmia classification. Our proposed model, a convolutional-recurrent neural network, leverages the strengths of both convolutional and recurrent neural networks to effectively capture spatial and temporal features within electrocardiography signals. To outperform the existent deep learning solutions, we incorporate a systematic data balancing strategy to address the class imbalance often present in the available datasets. Furthermore, we employ an automatic hyperparameter optimization technique to fine-tune the model's parameters for optimal performance. The proposed deep learning architecture, trained on a robust dataset of electrocardiograms, demonstrates exceptional accuracy in classifying multiple arrhythmia types. Our results, with an overall accuracy of 99. 60%, surpass previous state-of-the-art methods, highlighting the potential of our approach to improve the efficiency and accuracy of arrhythmia diagnosis in clinical settings.

Idioma originalInglés
Título de la publicación alojada6th IEEE International Conference on BioInspired Processing, BIP 2024
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350353709
DOI
EstadoPublicada - 2024
Publicado de forma externa
Evento6th IEEE International Conference on BioInspired Processing, BIP 2024 - Liberia, Costa Rica
Duración: 4 dic 20246 dic 2024

Serie de la publicación

Nombre6th IEEE International Conference on BioInspired Processing, BIP 2024

Conferencia

Conferencia6th IEEE International Conference on BioInspired Processing, BIP 2024
País/TerritorioCosta Rica
CiudadLiberia
Período4/12/246/12/24

Huella

Profundice en los temas de investigación de 'A Comprehensive Deep Learning Pipeline for Arrhythmia Multi-Classification with Electrocardiography Data'. En conjunto forman una huella única.

Citar esto